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Abstract 

Execution-based model checking (EMC) is a verification 
technique based on executing a multi-threaded/multi-
process program repeatedly in a systematic manner in or-
der to explore the different interleavings of the program. 
This is in contrast to traditional model checking, where a 
model of a system is analyzed. Several execution-based 
model-checking tools exist at this point, such as for exam-
ple Verisoft and Java PathFinder. The most common for-
mal specification languages used by EMC tools are un-
timed, either just assertions, or linear-time temporal logic 
(LTL). An alternative verification technique is Runtime 
Execution Monitoring (REM), which is based on monitor-
ing the execution of a program, checking that the execution 
trace conforms to a requirement specification. The Tempo-
ral Rover and DBRover are such tools. They provide a very 
rich specification language, being an extension of LTL with 
real-time constraints and time-series. We show how execu-
tion-based model checking, combined with runtime execu-
tion monitoring, can be used for the verification of a large 
class of safety critical systems commonly known as inter-
rupt-based systems. The proposed approach is novel in 
that: (i) it supports model checking of a large class of ap-
plications not practically verifiable using conventional 
EMC tools, (ii) it supports verification of LTL assertions 
extended with real-time and time-series constraints, and 
(iii) it supports the verification of custom schedulers.  

1 Introduction 

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. Pnueli [9] sug-
gested using LTL for reasoning about concurrent programs. 
Since then, several researchers have used LTL to state and 
measure correctness of concurrent programs, protocols, and 
hardware (e.g., [8]). LTL is an extension of propositional 
logic where, in addition to the well-known propositional 
logic operators, there are four future-time operators (Even-
tually, Always, Until, Next) and four, dual, past-time op-
erators. Metric Temporal Logic (MTL) was suggested by 
Chang, Pnueli, and Manna as a vehicle for the verification 
of real-time systems [2]. MTL extends LTL by supporting 
the specification of relative time and real-time constraints. 
All four LTL future time operators can be constrained by 
relative time (cycles) and real-time constraints specifying 
the duration of the temporal operator. This paper describes 
an additional extension to LTL and MTL suitable for the 
specification of time-series requirements such as stability, 
monotonicity, temporal average and sum values, and tem-
poral min/max values. It is then suggested how to combine 
execution-based model checking with runtime execution 
monitoring of properties in this logic to verify event-driven 
interrupt-based software systems. 

Execution-based model checking (EMC) is a technique for 
exploring the possible interleavings of a multi-
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threaded/multi-process program by executing the program 
repeatedly in a systematic manner, exercising a new inter-
leaving for each new repetition.  This is in contrast to tradi-
tional model checking, where a model of a system is exer-
cised systematically. Verisoft [6] is an example of an EMC 
system, which repeatedly executes a program on its existing 
execution platform, using partial order reduction techniques 
to avoid re-executing the same interleavings. Java Path-
Finder (JPF) [1] is another example, which uses a special 
JVM as execution platform, and a memory of “visited 
states” to avoid re-executing interleavings. The specifica-
tion languages used by such systems are usually restricted 
to propositional linear temporal logic at the best, not allow-
ing the statement of real-time properties. LTL formulae are 
translated into Buchi-automata that are exercised together 
with the executing program. One common way of analyz-
ing an application is to define an environment generator, 
which non-deterministically assigns values to variables that 
are used by the application, or that non-deterministically 
generates events to the application in case it is event-
driven. Typically EMC suffers from an exponential blow-
up in the number of possible interleavings as a function of 
the number of potentially concurrent processes being veri-
fied. This is partly due to the fact that traditionally, EMC 
considers the worst-case scenario, where all interleavings 
are considered. Techniques are applied (such as partial or-
der reduction) to reduce this number, but the starting point 
is that all interleavings should be analyzed. In the context 
of embedded systems, this assumption can be relaxed, as 
we shall describe. 

Runtime Execution Monitoring (REM) is a class of meth-
ods of tracking the temporal behavior of an underlying ap-
plication. REM methods range from simple print statement 
logging methods to run-time tracking of complete formal 
requirements (e.g., written in LTL/MTL) for verification 
purposes. Indeed, first applications of REM were verifica-
tion oriented where REM was used to track how formal 
specification requirements are conformed to by the actual 
executing system. Temporal Rover [3] and, more recently, 
Java PathExplorer [7], are such systems. Recent adaptations 
of on-line REM methods enable run time monitoring for 
non-verification purposes such as temporal business rule 
checking and temporal security rule checking [4]. 

Event-driven interrupt-based software systems consist of a 
collection of tasks, an interrupt system, and a scheduler. 
Tasks execute based on a schedule pattern defined by the 
scheduler, and are interrupted from time to time by external 
stimuli manifested as interrupts. Upon interrupt, given the 
specific composite state of the interrupt system (manifested 
by interrupt priority levels and interrupt masking setup), a 
corresponding task is enabled for execution by the sched-
uler. Hence, conventional timesharing based concurrency 

can be considered as a special-case of an interrupt-based 
system which consists of a single event (the system clock) 
and an invisible time-sharing scheduler. Conventional 
EMC tools do not attempt to model the system clock in the 
environment generator, nor do they model the scheduler as 
part of the underlying program. Rather, they assume the 
worst by exercising all possible interleavings of potentially 
concurrent tasks. Note that unlike desktop or workstation 
concurrent programs where processes are by definition 
concurrent, tasks may or may not be concurrent depending 
on the particular sequence of interrupts that triggers the 
system during execution; in fact, tasks might be both con-
current and sequential during the same execution. For ex-
ample, two equal priority interrupt driven tasks, task1 and 
task2, triggered by external events event1 and event2, re-
spectively, are concurrent if event1 fires while task2 is exe-
cuting, but might be sequential is event1 fires after task2 
completes its invocation and before it is invoked again due 
to a successive event2 event. 

2. Temporal Rover, Real-Time Constraints and Time 
Series 

Temporal Rover [3] uses runtime monitoring of LTL aug-
mented with real-time constraints (MTL) and time-series 
constraints. With MTL, each temporal operator is poten-
tially qualified by a real-time constraint, such as ‘Al-
ways<20commandResult>0’, which means that ‘com-
mandResult>0’ must hold every cycle until 20 real-time 
units in the future. MTL with time-series extends MTL to 
cater for the specification of relative values of variables and 
measurements. For example, consider an automotive cruise 
control application with an embedded Temporal Rover sta-
bility assertion requiring “speed to be 5% stable while 
cruise is set and not changed”:  
    
TRAssert{ 

     Always  

       ({cruiseSet} ->  

           {speed*0.95 < speed' && 

            speed' < speed*1.05}  

                Until $speed$  

            {cruiseChange || cruiseOff}  

       ) 

} 

In this example speed is a temporal data variable, which is 
associated with the Until temporal operator. This associa-
tion implies that every time the Until operator begins its 
evaluation, possibly in multiple instances (due to non-
determinism), the speed value is sampled and preserved in 
the speed variable of this instance of the Until; this value is 



referred to as the pivot value for this Until node instance. 
Future speed values used by this particular evaluation of 
the Until statement are referred to using the prime notation, 
i.e., as speed'. Hence, if the speed value was 100Kmh when 
cruiseSet is true, then the pivot value for speed is 100, 
while every subsequent speed is referred to as speed' and 
must be within 5% of the pivot speed value. Time series 
constants enable the specification of important categories of 
requirements such as stability, average, and min-max val-
ues.   

The DBRover [4]  is a remote version of the Temporal-
Rover whereby assertions are monitored on a remote ma-
chine, using HTTP, sockets, or serial communication with 
an underlying client/target application. The DBRover in-
cludes a graphical temporal rule editor, a temporal rule 
simulator, and a temporal rule execution engine based on 
the TemporalRover code generator. In run-time, the 
DBRover listens for messages from client application(s) 
and evaluates corresponding temporal assertions. DBRover 
monitoring is performed on-line, namely, the DBRover 
operates in tandem with the target program, and re-
evaluates assertions every cycle while not storing an ever-
growing history trace. 
 
3. Execution-Based Model Checking of Interrupt-

Based Systems 

Fig. 1 illustrates the architecture for EMC of interrupt-
based systems. In this configuration, EMC is performed on 
the target board; the environment generator communicates 
with the target board using the same interface (for event 
interrupts and data), as does the real environment. The en-
vironment generator and the target execute in real-time, 
where the environment generator generates real-time stim-
uli for the target. The environment generator in this archi-
tecture differs from the environment generator of tradi-
tional EMC systems in that: 

1. The environment generator executes in real-time and is 
also extended with delay commands, thereby enabling 
environment programs to generate their stimuli accord-
ing to a real-time plan. Traditional EMC does not 
model real-time constructs in the environment, and 
does not mimic the environment in real-time. 

2. The environment generator generates events instruct-
ing (via interrupts) the embedded scheduler to fire cer-
tain tasks with particular timing. This empowers the 
tester to generate event sequences that force varying 
patterns of concurrency. For example, consider the 
two-task example provided in the introduction. Con-
sider that each task executes for less than one second; 
the tester might know that event2 cannot, under certain 
circumstances, fire within one second after event1 and 

that consequently task2 cannot interrupt task1; all the 
tester needs to do is to force this real-time constraint in 
the event generation segment of the environment 
generator. In contrast, traditional EMC does not model 
the scheduler or real-time. Hence, to achieve similar 
performance using traditional EMC, a tester needs 
analyze the system and conclude that the tasks cannot 
be concurrent, and then rely on complicated 
programming of process priority levels to achieve the 
same effect.  

3. Since EMC is performed on the target system in real-
time, using real interrupts, a real scheduler, and real in-
terrupt system, it enables the verification of interrupt 
latency requirements (i.e., requirements pertaining to 
the delay between interrupt detection time and the time 
a corresponding service task fires). 
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Figure 1. UML component diagram for EMC of 
Interrupt-based systems 
ence, Fig. 1 illustrates the application of EMC as a so-
histicated test generator for embedded interrupt-based 
stems. Having external events represented as part of the 
vironment program enables a focused and effective veri-

cation effort where environment programs reflect the 
ster’s knowledge of the embedded system and the envi-
nment.  

ote that conventional EMC verification time is exponen-
al in the number of potentially concurrent tasks to be veri-
ed. Many embedded system programs, however, consist 
f ten or more (possibly small) tasks. Therefore, the brute 
rce approach taken by conventional EMC tools does not 
ale well when applied to such embedded systems. In con-
ast, having the ability to check specific interleavings us-
g event generation in the environment generator enables 
ore efficient verification of such systems. 



Unlike non-embedded software, where process scheduling 
is for the most part invisible to the programmer, embedded 
system programs often include custom schedulers. An em-
bedded custom scheduler is responsible for scheduling 
event-tasks based on pending, yet un-serviced, interrupts as 
well as periodic background tasks.  Note how the suggested 
architecture enables explicit modeling of the scheduler. 
Hence, a novel feature of the suggested architecture is its 
ability to verify custom schedulers; in contrast, traditional 
EMC must either assume the worst, i.e., that all possible 
interleavings of all tasks need to be verified, or must use 
the priority system to programmatically induce the same 
effect, resulting in a program that is behaviorally different 
than the original, thereby discrediting the verification ef-
fort. 

On the verification side of Fig. 1, the architecture incorpo-
rates REM of LTL augmented with real-time and time-
series constraints, as described in section 2 and [5]. Real-
time measurements are provided to the REM tool from the 
embedded real-time system, enabling the REM tool to per-
form real-time constraint evaluation for temporal asser-
tions.  

4. Conclusion 

Embedded real-time applications pose unique challenges to 
the verification community. In these systems, real-time 
issues, such as correctness of the scheduler, and event-
response latencies, are all of primary concern. Neverthe-
less, EMC can be effectively used to verify such systems, 
provided that it is used in a specific manner and combined 
with REM of specifications augmented with real-time con-
straints.    
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